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Abstract

Wave-induced motions of MV Estonia have been predicted in irregular seas at different headings and
speeds by applying the strip method and the linear superposition principle. The numerical results
have been compared to experimental data from mode! tests carried out by SSPA. Conclusions are
based on the present estimate of the sea state, speed and heading at the time of the accident. The
numerical results indicate that heavy bottom slams or incidents of green water on foredeck were
unlikely during the last voyage of MV Estonia. Spray and smaller amounts of water came certainly to
the deck and the vessel obtained flare impacts. The rigid body vertical accelerations of the vessel
were before the accident near the passenger comfort limit which means that 10 to 20 % of the
passengers may have been seasick (vomiting).
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1 INTRODUCTION

Wave-induced motions of MV Estonia have been predicted in irregular seas by applying the linear
superposition principle. The superposition principle assumes that the ship responses in irregular seas
may be determined by summing the ship responses to a large number of regular sinusoidal waves
making up the irregular seaway. Response amplitude operators, or ship responses (heave, roll, pitch,
vertical accelerations etc) in regular waves with unit amplitude have been determined by the
SCORES-program (Raff, 1972) based on the strip theory.

In the strip theory, the hydrodynamic forces are first determined on two-dimensional ship sections
and the total forces are obtained by integrating the sectional forces over the ship Iength. The method
has been validated in numerous comparisons with model and full scale results. Numerical predictions
have been made for different ship speeds, headings and wave periods to study their effect on the
motions. The results are discussed from the point-of-view of passenger comfort, deck wetness and
bottom slamming. The wave impact forces on the bow visor of MV Estonia have been determined
by a time domain simulation method and are reported in the report VTT VALC106.

2 CONDITIONS

2.1 Sea states

Numerical predictions of wave-induced motions in long-crested irregular waves were made in four
sea states using both the JONSWAP and the ISSC wave spectrum formula given in Appendix 4. The
wave spectrum shows the wave energy distribution versus frequency. In the JONSWAP spectrum,
the wave energy is concentrated over a narrower frequency band than in the ISSC spectrum. The
significant wave height, Hg, was in all cases 4.0 m and the modal wave periods, T, or the periods
corresponding to the spectrum peak were 7.0, 7.8, 8.5 and 9.5 s.

The present estimate of the sea state during the MV Estonia accident is 4 m significant height and 8 s
modal period. Estimates of the modal period and the significant wave height were obtained from the
Finnish, Swedish and German institutes of marine research, MTL, SMHI and DW, respectively.
Table 2.1 gives their predictions determined by numerical models at the accident site at 02 Finnish
time 28 September 1994, i.e. about one hour after the accident.

Table 2.1 Estimates of wave conditions at 02 28.9.1994 at the site of the accident.

Institute H¢ [m] Tq [s] Ty [s] Mean dir, [deg.]
MTL, Finland 4.4 8.2 260
SMHI, Sweden 4.2 8.5 7.2 218 -233
DW, Germany 4.3 8.3 7.0 218

In the table, T is the mean wave period. SMHI gives both the wave direction corresponding to the
peak frequency (first) and the direction of the shortest waves which is the same as the wind
direction. MTL and SMHI have also made estimates of the wave conditions before and after the
accident. A summary of these estimates is in Table 2.2.
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Table 2.2 A summary of wave conditions before and after the accident.

Institute Position Time H [m] Ty [s] Mean dir.
MTL 5925,2235 |27.9,23.00 3 7 260
SMHI 5927,2250 |27.9,23.00 2.5 6.7 250 - 185
MTL Accident site | 28.9, 01.00 4.0 7.8 260
MTL Accident site | 28.9, 01.30 4.2 8.0 260
MTL Accident site | 28.9, 08.00 5.0 8.7 270
SMHI Accident site | 28.9, 08.00 5.1 9.5 236 - 272

The estimates of the significant wave height by the different institutes agree remarkably well. The
Finnish MTL has assumed in predicting the mean wave direction that the wind shift to south on the
27.9 did not last long enough to change the direction of the major wave components. This
conclusion is based on their wave observations on the northern part of the Baltic. The experience of
MTL is that the mean error in the predicted significant wave height is about 0.5 m, in the wave
period about one second and in the wave direction about 10 degrees.

All the wave estimates are for deep water. Numerical predictions by MTL show that the significant
wave height may increase significantly in shallow water due to wave focusing (Kahma et al. 1995).
If waves with significant wave height 4 m and modal period 8 s enter an area were the waterdepth is
around 20 m, the significant wave height may increase to 6 m while the period remains
approximately constant. At the same time, statistics of the waves change so that a large part of the
waves will have heights near the significant height. However, the maximum wave hei ght will not
increase respectively and remains approximately on the same level as with the original 4 m significant
height.

The Finnish Lion, about 25 nautical miles west from the MV Estonia accident site, is an example of a
shallow area were the significant wave height will increse in suitable weather conditions. The Finnish
National Board of Navigation has analysed soundings in a sector reaching over 10 nautical miles east
from the wreck of MV Estonia. The area covers the probable route of MV Estonia before the
accident. The minimum waterdepth measured was 52 m which indicates that there cannot be sites
shallower than about 40 m between the sounding lines. Thus, shallow waterdepth did not have an
effect on the wave formation when the lockings of the bow visor of MV Estonia were broken. It
may be assumed that the significant wave height was about 4 m and the modal period about 8 s at
the time of the accident.

The following table shows a summary of the wave spectra in the numerical predictions and gives the
relevant parameters used in forming the spectra.

Table 2.3 Summary of wave spectra.

Modal period JONSWAP ISSC

Tq [s] Wind speed [m/s] | Mean period
T [s]

7.0 38.1 5.40

7.8 22.2 6.01

8.5 14.4 6.55

9.5 8.3 7.33
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The mean period of an ISSC spectrum is linked to the modal period by Ty = 0.771T,. The
predictions at different wave periods show the effect of wave period on the wave-induced motions of
MV Estonia. According to the linear superposition principle motions such as heave, pitch, vertical
acceleration and vertical relative motion are directly proportional to the significant wave height at a
fixed value of wave period. Thus, the predicted significant motion amplitudes, which are for Hg =
4.0 m, may easily be scaled for other values of significant wave height.

In addition to the predictions in long-crested seas, wave-induced motions were also computed in
short-crested seas with a modal period of 7.8 s. The cosine-square spreading function was used.

Short-term wave statistics may be determined by applying the Rayleigh distribution in the same way
as statistics of ship responses in a seaway. The probabilities of individual wave heights and ship
response amplitudes exceeding certain levels are discussed in Section 3.

2.2 Speeds and headings

The numerical predictions were made for the vessel speeds of 7, 12, 15 and 17 knots. The present
estimate of the forward speed of MV Estonia just before the accident is about 15 knots which is
based on witness accounts. The wave-induced motions were determined at the headings to waves of
180° (head seas), 150° and 120°. MYV Estonia encountered the waves probably slightly to the port
from direct head seas though there are estimates which indicate that the heading may have been
closer to beam seas.

2.3 Definition of the vessel hull form

Figure 2.1 shows the body plan and lines of MV Estonia. In the numerical predictions, the vessel
hull form was defined by 11 and 21 sections. The number of sections had an insignificant effect on
the wave-induced motions. Lewis-forms were used in defining the section shapes. Table 2.4

presents a summary of the main particulars of MV Estonia.

Table 2.4 Main particulars of MV Estonia.

Symbol | Dimension Value
Length over all Loa m 155.4
Waterline length Lyi m 144.8
Length betw. perp. Lon m 137.4
Beam mid, A deck B m 24.2
Waterline beam Bwi m 23.6
Draught at aft. perp. Ty m 5.75
Draught at forw. perp. T¢ m 5.25
Trim, positive by stern m 0.50
Displacement Vv m3 12 243
Longitudinal CG from aft. perp. LCG m 63.7
Vertical CG KG m 10.50
Transverse metacentric height GMr m 1.28
Roll radius of gyration kxx m 8.96
Pitch radius of gyration kw m 36.2
Depth to stemhead D m 10.0
VTT VALMISTUSTEKNIIKKA VTT MANUFACTURING TECHNOLOGY P.O. Box 1705 Tel.int.+358 0 4561
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Fig. 2.1 Body and lines plan of MV Estonia.
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The numerical predictions are for a vessel mean draught of 5.5 m and an aft wim of 0.5 m, i.e. the
draft at the forward perpendicular was 5.25 m and at AP 5.75 m. The displacement of 12 365 tons
at a water density of 1.01 tons/m3 and the longitudinal centre of gravity were taken from hydrostatic
calculations by the NAPA-program. After the predictions had been made, the load condition of MV
Estonia during the accident trip was estimated as 12050 tons and 0.435 aft wim. The fore and aft
draughts are respectively 5.172 m and 5.607 m. The difference between the actual and the assumed
loading condition is so small that it has hardly any effect on the wave-induced motions.

Standard values of 0.25Ly,) and 0.38B, were used for the longitudinal and transverse radius of
gyration, respectively. The transverse metacentric height was set to 1.3 m while the actual value was
1.17m. All but one of the stations for which predictions were made are on the centre line. The roll
motion and the transverse metacentric height have no effect on the results on the centre line. The
roll motion of MV Estonia was small since the damping fins were out. However, the transverse
metacentric height had an effect on the list of the vessel at later stages of the accident. Also the
actual location of the centre of gravity differed a little from the assumed value. The final estimated
values are: LCG = 63.85 m and KG = 10.62 m. A summary of the input data is given in Appendix 3.

2.4 Predicted responses

In additon to heave, pitch and roll, vertical acceleration has been determined at six stations: the
stemhead on the Centre Line (CL), bow visor on the side, construction frame 8.5 (CL), bridge (CL},
midship (CL) and aftship (CL). The vertical motion relative to wave surface has been predicted at
the three foremost stations. The longitudinal and transverse coordinates of the six stations measured
from the after perpendicular and the centre line, respectively, are given in the following table.

Table 2.5 Stations.

Station Dist. from AP [m} Dist. from CL. [m]
Stemhead # 10 2/3 146.50 0

Bow visor # 10 1/4 140.84 6.08
#8172 116.79 0
Bridge 111.40 0
Midship 68.70 0
Aftship 10.00 0

Since only motions in the vertical plane were considered, the results apply on any deck at the specific
station.

3 RESULTS

The results are given as significant amplitudes in tabular form in Appendix 1. The most important
results are also shown in graphical form in Appendix 2.

The significant response amplitude, or the mean of the one third highest response amplitudes is given
by:

Significant amplitude = 2(Root Mean Square value) = 2RMS

VTT VALMISTUSTEKNIIKKA VIT MANUFACTURING TECHNOLOGY P.O. Bex 1705 Tel.int.+358 0 4561
Laiva- ja konetckniikka Maritime Technology FIN-02044 VTT Telefax +358 0 455 0619
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while the mean of the one tenth of highest amplitudes is given by:

X1/10 = 2.55 RMS

The significant wave height, respectively, is given by 2(significant amplitude) = 4RMS where RMS is
the Root Mean Square value of the wave time history.

The probabilities of the response amplitude exceeding a specific value, z, in a short, a few hours long
time interval may be estimated by the Rayleigh distribution:

2

s
P[ x, > z] —g 2kMS®
For instance, the following exceedance probabilities are obtained.
g P

Table 3.1 Exceedance probabilities according to the Rayleigh distribution.

Response amplitude Probability of exceedance
RMS (0.6065

2RMS 0.135

2.55RMS 0.0387

4RMS 0.0003355

The table shows that there is a 13.5 % probability that the response amplitude will be larger than the
significant amplitude. Thus, approximately one wave in ten waves is higher than the significant wave
height. Approximately one response amplitude of 25 oscillations is larger than the mean of the one
tenth highest amplitudes. As a rule of thumb is often used that the maximum amplitude during a few
hours is twice the significant amplitude, or 4RMS which is exceeded approximately at a probability
of 1/3000. The wave encounter period of MV Estonia during the accident night was 3.5 to 4.5
seconds so that MV Estonia encountered 3000 waves in 3 to 4 hours.

In every wave train including 3 000 individual waves with a significant height of 4 m, there is a good
chance that one of the waves is higher than 8 m. At a probability of 1/3 000 the first or any other of
the waves may be higher than 8 m. There are an infinite number of different wave trains which have
the same significant height, spectrum and wave statistics.

The most probable extreme response amplitude in N oscillations, or wave encounters may be
estimated by the formula:

X =RMSJ2IaN
The previous formula gives for instance the following resuls.

Table 3.2 Most probable extreme values.

Number of oscillations, N | Extreme value

100 3.035RMS

1 000 3.717RMS

3000 4,002RMS

10 000 4.292RMS
VTT VALMISTUSTEKNIIKK A VIT MANUFACTURING TECHNOLOGY P.O. Box 1705 Tel.int.+358 0 4561
Laiva- ja konetekniikka Maritime Technelogy FIN-02044 VTT Telefax +358 0455 0619
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The most probable extreme value in 3 000 oscillations, about 4RMS, agrees of course well with the
probability of an individual response amplitude exceeding the value 4RMS. The probability of the
extreme value exceeding the most probable value is quite high: 63.2 %. The most probable extreme
value does not increase quickly with N, the number of oscillations, or wave encounters due to the
logarithmic dependence on N. The statistics in Tables 3.1 and 3.2 explain quite well why 4RMS is
often used as a rule of thumb for the maximurn individual response or wave amplitude.

The results in the Appendices show in general that the modal wave period and the heading to waves
have a stronger effect on the responses than the forward speed of the vessel within the wave periods
and headings considered here. The significant motion amplitudes increase with increasing wave
period and when the heading to waves changes from head seas towards beam seas. Respectively, the
responses are larger in shori-crested seas than in long-crested seas with the exception of the heading
1200, It seems thus that during the accident night in nearly head seas MV Estonia was more or less
running through the waves. The situation was different if MV Estonia had a heading closer to beam
seas. The results stress the importance of accurate estimates for the wave period, wave direction and
the course of the vessel. The waves may have been quite confused and short-crested due to the wind
shift during the day.

3.1 Comparison with numerical predictions and model tests by the SSPA

The significant amplitudes of the responses predicted by SSPA with a similar method as VTT agree
very well with the Finnish results. The significant amplitudes at the highest value of modal wave
period T = 9.5 s are a little higher in the predictions by VTT when the results using the JONSWAP
wave spectrum are compared to the VTT and SSPA results obtained by using the ISSC spectrum
formula. The JONSWAP spectrum is narrower than the ISSC spectrum and close to resonance the
vessel responses are larger when the energy in the waves is concentrated over a narrow band of
frequencies near the resonance frequency. At the three shorter wave periods, the spectrum shape has
little effect on the responses.

The following two tables compare the significant motion amplitudes predicted by VTT to
experimental results obtained by SSPA in head and bow seas at 15 kn speed. The results by SSPA
are from the APPENDIX to the SSPA Report 7524, dated 1995-11-05. The significant motion
amplitudes in tables 3.3 and 3.4 have been divided by the significant wave amplitude, Hy/2, to make it
possible to compare tests at different values of significant wave height. The nominal value of modal
wave period has been § s. For this particular value of modal period, the results of VTT have been
determined by linear interpolation between the results for T, = 7.8 and 8.5 s.

Table 3.3 A comparison of numerical and experimental motions in head seas with T, = 8 s at 15 kn.

SSPA towing tank SSPA MDL VTT strip theory
Sign. ampl./(H/2) H,=4m H,=55m H,=4m
Heave L.CG 0.213 0.219 0.200 0.185
Pitch 0.546 0.609 0.410 0.484
Rel. motion #10 1,560 1.646 1.409 1.457
Rel. velocity #10 1.887 1.899 1.776 2.040
Vert. acc. visor 0.881 0.986 0.740 0.830
Vert. acc. L2 0.306 0.325 0.260 0.238
VTT VALMISTUSTEKNIIKK A VTT MANUFACTURING TECHNOLOGY P.O. Box 1705 Tel.int.+358 0 4561
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Table 3.4 A comparison of numerical and experimental motions in bow seas with T, = 8 s at 15 kn.

SSPA MDL VTT strip theory

Sign. ampl./(H/2) H,=43m H;=55m

Heave LCG 0.310 0.310 0.238
Pitch 0.660 0.658 0.619
Rel. motion #10 1.819 1.851 1.645
Rel. velocity #10 2.002 2.038 2.096
Vert. acc. visor 1.111 1.137 1.059
Vert. acc. L2 0.355 0.369 0.284

The numerical results show in general good correlation with the experimental results. In bow seas,
the predictions by the strip theory are slightly below the test data with the exception of the relative
vertical velocity which is about 5 % higher than in the tests. In particular, heave and the vertical
acceleration at midship are underpredicted by the strip theory also in head seas where the other
numerical results excluding the relative vertical velocity fall between the experiments in the towing
tank and the Maritime Dynamics Laboratory (MDL).

The experimental results at different values of significant wave height confirm also in this case the
validity of the linear superposition principle, i.e. the significant response amplitudes at the same wave
period are linear with regard to the significant wave height.

3.2 Vertical accelerations

At the bow visor of MV Estonia, the significant amplitude of vertical acceleration was 2 - 2.5 m/s2
and the largest amplitudes were about 0.4g just before the accident assuming that the heading to
waves of the vessel was about 150 degrees, speed 15 knots, significant wave height about 4 m and
the modal wave period 8 s. This acceleration level is roughly half of the level when masters of cargo
vessels start to consider a manoeuvre to reduce the accelerations and about two thirds of the
corresponding limit on Ro-Ro cargo vessels including the cross-channel car-ferry ms Roi Baudoin
from the sixties (Karppinen, 1987).

Figure 3.1 compares the significant vertical accelerations on board MV Estonia to vertical
accelerations masured on board some other vessels and to the ISO 2631/3 (1985) motion sickness
standard which is based on the limiting Motion Sickness Incidence (MSI) of 10 % amongst the
passengers. The corresponding limiting significant vertical acceleration level is 1.0 m/s2. On the
bridge and in the forward cabins of MV Estonia, the significant vertical acceleration was about 1.5
m/sZ which is somewhat high from the point-of-view of passenger comfort. About 20 % of the
passengers in the foremost cabins may have felt seasick. On the other hand, people tolerate higher
vertical accelerations without getting seasick when they are laying in bed than when standing or
sitting.

VTT VALMISTUSTEKNIIKKA VIT MANUFACTURING TECHNOLOGY P.O. Box 1705 TekinL+358 0 4561
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Fig. 3.2 The effect of heading on the vertical acceleration. JONSWAP spectrum.
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Fig. 3.3 The effect of speed on the vertical acceleration on the bridge in bow seas.
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At midship, the acceleration level of about 0.7 mys2 significant amplitude was just perceptible and
not many people should have felt symptoms of seasickness. At aftship in the cafeteria and restaurant
spaces, the significant vertical acceleration was near the ISO 2631/3 limit of 1.0 my/s2 when about 10
% of standing or sitting people unused to ship motion are seasick (vomiting) after an exposure of
two hours. Thus, with regard to the passenger comfort the wave-induced motions of MV Estonia on
the accident night after midnight Finnish time were near the comfort limit which is significantly
below survival conditions. Before midnight, when the significant wave height was under 3 m, the
vertical accelerations on board MV Estonia were at least 25 % lower than just before the accident.

Lawther and Griffin (1986) report on Channel crossings when the significant vertical acceleration at
the centre of the ship has been 1.1 - 1.5 m/s2 and 25 - 35 % of the passengers on board have been
seasick (vomiting). Significant vertical acceleration amplitudes of 1.2 - 2.2 m/s? have been measured
in the foreship on board ms Silja Symphony during a scheduled voyage from Helsinki to Stockholm
in heavy bow seas (VTT Report VALC138 dated 12.9.1995). lkeda and Shirazawa (1994) have
observed MSI ratios of 20 to 40 % on board Japanese passenger/car ferries when the significant
vertical acceleration has been 2 to 4 m/s>.

During a seasickness trial on board a fast Norwegian passenger catamaran (Karppinen et al. 1993),
the significant vertical acceleration amplitude in the passenger compartment was 3 m/s>. Two trial
runs were conducted with about 100 passengers on board on each trial. On both runs, about 20 %
of the passengers were seasick (vomiting) after half an hour of exposure. The frequency of vertical .
motion during the tests was about 0.4 Hz which is higher than on board MV Estonia. People
tolerate larger vertical accelerations without getting seasick at higher frequencies.

If MV Estonia was running in near head seas as assumed, a change of heading or reduction of
forward speed would have had only a moderate effect on the vertical acceleration level (Figures 3.2
and 3.3). With a change of heading from bow seas towards beam seas, the accelerations would have
increased while by dropping the speed to 7 knots the vertical acceleration level on the bridge would
have decreased from about 1.5 m/s? to 1.3 m/s2. In following seas, the vertical accelerations would
of course have been significantly lower.

3.3 Vertical relative motion at bow

The vertical relative motion is defined as the vertical ship motion relative to the vertical motion of
the wave surface. The relative motion is obtained as the difference between the absolute rigid body
vertical motion of the ship and the vertical motion of the undisturbed wave. If the amplitude of the
vertical relative motion exceedes the freeboard at bow, there will be green water on deck.

The significant amplitude of the vertical relative motion at the bow visor of MV Estonia was
according to the predictions 3 - 4 m. The freeboard to the car deck was about 2.0 m, to the upper
edge of the ramp about 7.0 m and to the stemhead about 9.5 m (Figure 3.4). The stationary bow
wave may be assumed to reduce these freeboards by 1 m though it is not clear whether the bow
wave height should be taken into account.

The predicted vertical relative motion does not include the effect of dynamic swell-up which is
difficult to estimate. The dynamic swell-up may increase the vertical relative motion by 30 to 50 %.
In full scale, the dynamic swell-up gives rise to spray which by the action of wind comes to the
foredeck. It is not well known what is the effect of dynamic swell-up on the green water on deck.

VIT VALMISTUSTEKNIIKKA VTT MANUFACTURING TECHNOLOGY P.O. Box 1705 Tel.int.+358 0 4561
Laiva- ja konetekniikka Maritime Technology FIN-02044 VTT Telefax +358 0 455 0619
FINLAND Telex 122972 viztha sf



v VALMISTUSTEKNIIKKA TYORAPORTTI

VTT VALCS3 14

Laiva- ja konetekniikka TECHNICAL REPORT

The following table gives probabilities of the water level exceeding certain heights at the bow. The
exceeedance probabilities are given for both 3 m and 4m significant amplitude of relative motion.
The freeboards include the effect of an one metre high bow wave.

Table 3.3 Probabilities of relative motion at bow exceeding certain levels.

Level and freeboard [m] Exceedance prob. rg = 3.0 m Exceedance prob. r¢ = 4.0 m
Cardeck, FB=1.0 0.801 0.882

Ramp, FB = 3.0 0.135 0.325

Ramp, FB =4.5 0.0111 0.0796

Ramp upper edge, FB = 6.0 0.000335 0.0111

Stem, FB = 7.5 3.710°6 0.000884

Stemhead, FB = 8.5 0.000120

| 1. SUP U * ] L] ‘.jls““ .—[—“‘—-o PR, - T "1 L -] we 14 3
roo L
Fig. 3.4 Bow of MV Estonia.
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The water level at bow rose in practice nearly at every wave encounter above the car deck level.
One wave in hundred, or about once in five minutes the wave surface reached the level of the upper
edge of the ramp opening from where there was stll 2.5 m freeboard to the stemhead. With these
waves, spray and some water came to the foredeck. The probability of relative motion exceeding the
stemmhead was about 1/10 000. Thus, it is possible that more water came to the foredeck a few times
during the accident voyage.

The probability of ship bottom coming out of water at the station 8 1/2 was about 1/1 000 and the
probability of a bottom slam about 1/2 000 using Ochi’s formula for the critical re-entry velocity.
Thus, MV Estonia may have obtained a bottom slam during the accident voyage. In general, the
critical slamming probability when cargo ships reduce speed or change course seems to be over 0.01
(Karppinen & Aitta, 1986).

The probability of a fiare impact during the accident voyage must have been significantly higher than
the bottom slamming probability. The knuckle at the bow is about 2 m above the waterline and there
the deadrise angles of the sections are small, about 20 degrees. If Ochis’s critical re-entry velocity is
applied with a freeboard of 2 m, a probability of about 0.1 is obtained for flare impacts. However,
Ochi’s formula gives in this case probably too low values for the re-entry velocity. The impact
probability decreases quickly with increasing critical re-entry velocity.

3.4 Vertical relative velocity

The vertical relative velocity seems 1o be not so sensitive to changes in the modal wave period as the
other responses. The significant amplitude at the bow visor of MV Estonia has been 4 to 4.5 my/s.
The most probable extreme amplitude in 1 000 wave encounters has been about 8 m/s and in 10 000
near 10 mys.

According to the drop tests by Yamamoto et al (1985) the maximum pressure on the flare part may
be expressed as k 0.5 p V2 where V is the vertical velocity and k a constant the value of which
depends on the flare angle. MV Estonia had at the bow visor a flare angle of about 45° for which
roughly k = 2. This value with V = 9 m/s gives a maximum pressure of 8 ton/m2 which is more than
the design pressure but much less than the 50 ton/m?2 which has been reported in some cases. These
very high pressures are local and may be explained by high, local water particle velocities in waves
breaking nearly in the normal direction on the hull surface or being entrapped under an overhanging
bow flare.

4 CONCLUSIONS

The rigid body vertical accelerations of MV Estonia duning the accident voyage after midnight
Finnish time were near the passenger comfort limit which corresponds to about 10 % of the
passengers seasick (vomiting). From the point-of-view of passengers, the trip was uncomfortable.
The conditions on board MV Estonia before the accident were probably similar to conditions which
have been observed on board other passenger ferries in heavy weather in general. At the bow of MV
Estonia, the vertical accelerations were about two thirds of the level when Ro-Ro cargo vessels
decrease speed or change heading to reduce the wave-induced motions of the vessel. The bow of
MYV Estonia did not probably submerge 1o the waves, i.e. no events of green water on the foredeck,
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but certainly spray and smaller amounts of water came to the deck. There were not many heavy
bottom slams but the number of flare impacts must have been significantly higher.
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Appendix 1

Tables

Table A.1 Sign. motion amplitudes. Heading 180° (head seas), JONSWAP spectrum, Hg =4 m,
Table A.2 Sign. motion amplitudes. Heading 1500 (bow seas), JONSWAP spectrum, Hg = 4 m.
Table A.3 Sign. motion amplitudes. Heading 1200 (bow seas), JONSWAP spectrum, Hg =4 m.
Table A.4 Sign. motion amplitudes. Heading 180° (head seas), ISSC spectrum, Hg =4 m.
Table A.5 Sign. motion amplitudes. Heading 150° (bow seas), ISSC spectrum, Hg =4 m.
Table A.6 Sign. motion amplitudes. Heading 120° (bow seas), ISSC spectrum, Hg =4 m.
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Appendix 2

Figures

Fig. A.1 Relative vertical motion at bow visor in head seas. JONSWAP spectrum,

Fig. A.2 Relative vertical velocity at bow visor in head secas. JONSWAP spectrum,

Fig. A.3 Vertical acceleration at bow visor in head seas. JONSWARP spectrum.

Fig. A4 Vertical acceleration on the bridge in head seas. JONSWAP spectrum.

Fig. A.5 Vertical acceleration at midship in head seas. JONSWAP spectrum.

Fig. A.6 Vertical acceleration at 10 m from AP in head seas. JONSWAP spectrum,

Fig. A.7 Relative vertical motion at bow visor in bow seas (heading 1500). JONSWAP spectrum.
Fig. A.8 Relative vertical velocity at bow visor in bow seas (heading 1500). JONSWAP spectrum.
Fig. A9 Vertical acceleration at bow visor in bow seas (heading 1509). JONSWAP spectrum.

Fig. A.10 Vertical acceleration on the bridge in bow seas (heading 1500). JONSWAP spectrum.
Fig. A.11 Vertical acceleration at midship in bow seas (heading 150°). JONSWARP spectrum.

Fig. A.12 Vertical acceleration at 10 m from AP in bow seas (heading 1500), JONSWAP spectrum.
Fig. A.13 Relative vertical motion at bow visor in bow seas (heading 120°). JONSWAP spectrum.
Fig. A.14 Relative vertical velocity at bow visor in bow seas (heading 120°), JONSWAP spectrum.
Fig. A.15 Vertical acceleration at bow visor in bow seas (heading 1200). JONSWAP spectrum.
Fig. A.16 Vertdcal acceleration on the bridge in bow seas (heading 120°), JONSWAP spectrum.
Fig. A.17 Vertical acceleration at midship in bow seas (heading 1200). JONSWAP spectrum.

Fig. A.18 Vertical acceleration at 10 m from AP in bow seas (heading 120°). JONSWAP spectrum.
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MYV ESTONIA ACCIDENT INVESTIGATION

Effect of speed on the visor loads

The effect of forward speed on the visor loads in bow oblique seas (wave direction 150
degrees) is here analysed on the basis of the results of the model experiments and numerical
simulations. Only the vertical force component is considered since the experiments show
that the horizontal component was always very close to the vertical and the opening
moment was proportional to the vertical force, i.e. a larger force indicates a larger opening
moment,

The model experiments with Estonia, the extensive systematical series of experiments by
SSPA and the simulations show that the vertical force on the visor in head and bow seas
over a large speed range is approximately directly proportional to the forward speed. The
dependence on speed may be a little weaker but it is hardly stronger. Thus, a linear
relattonship between the visor force and speed has been assumed. Two exceedance
probabilities have been considered: 107 and 10 which correspond approximately to one
hours and ten hours sailing time, respectively. The significant wave heights, H,, have been
assumed as 4 and 4.5 m.

The following table shows a summary of the vertical visor loads tn bow oblique seas at
different speeds according to the results of the numerical simulations (VIT Report
VALC106, Table 5.1} and the assumption of linear dependence on speed.

Table 1. The vertical wave load on the visor in bow seas.

H. [m] !Exc. prob. Speed 7.5 kn {Speed 10 kn |Speed 12 kn |Speed 15 kn
4 107 1375 kN 1830 kN 2200 kN 2750 kN
4 10 1850 kN 2470 kN 2960 kN 3700 kN
45 107 1950 kN 2600 kN 3120 kN 3900 kN
45 107 2650 kKN 3530 kN 4240 kN 5300 kN

The forces in the previous table include the effect of the weight of the visor which has been
assumed as 589 kN (60 tons). The effect of wave height increase from 4 to 4.5 m is in
agreement with the model tests.

To see better the trends with speed and since the ioad required to break the visor lockings is
not exactly known, the load in the conditions where the lockings broke has been given the
value of 100 and all the other force values have been scaled accordingly. Thus, the load
2750 kN which has an exceedance probability of 107 at 15 knots speed in seas with H, = 4
m has been assigned the value of 100. The next table shows the results in this form.

Table 2. The relative vertical wave load on the visor in bow seas.

H; {m] [Exc. prob. Speed 7.5 kn |Speed 10kn [Speed 12kn |Speed 15 kn
4 10° 50 67 80 100
4 10 67 90 108 135
45 10° 71 95 113 142
4.5 10°* 96 128 154 193

When the lockings of the visor broke, the Estonia had been sailing about half an hour from
the waypoint in increasing bow seas. Before the course change at the waypoint, the loads




on the visor had been at least 25 % smaller than after the waypoint, i.e. about 75 using the
same scale as in Table 2. Thus, it is reasonable to assume that the load which broke the
attachments of the visor was not a very rare extreme load. On the other hand, the ultimate
strength of the lockings could not have been below the level of about 75 since then the
accident may have happened already before the waypoint. This, however, depends quite
strongly on how quickly the significant wave height rose during the last half an hour before
the accident. The ultimate strength of the locking system must have been a little smaller
than the load which broke the lockings, perhaps about 90.

From the accident site, the Estonia had about 75 nautical miles to Séderarm. The
significant wave height was increasing and there were on the way some areas of shallow
water where the wave height would probably have been higher than in the surrounding deep
water. At 15 kn speed it would have taken 5 hours and at 10 knots 7.5 hours to Séderarm.
A large part of this time the significant wave height would have been about or larger than
4.5m. At speeds more than 10 knots, the maximum loads would have been above the level
of 95 according to Table 2. Thus, it can be concluded that at a speed of more than 10 knots
in bow seas during the accident night after 01 Finnish time the Estonia had no chance of
avoiding the breaking of the lockings.

At a speed of 7.5 knots, it would have taken about 10 hours to S6derarm. The maximum
loads on the visor at this speed would most likely have exceeded the level which broke the
lockings, if the Estonia had not changed significantly course. The Estonia may have
survived in the prevailed bow seas without breaking the lockings at a speed of below 5
knots. The chances of survival would then have been of the same order as in playing the
Russian Roulette.

If the lockings of the Estonia had been constructed according to the design calculations, the
ultimate strength of the locking system would have been approximately twice the actual
strength, or about 180 on the scale of Table 2. Then the Estonia would likely have survived
at a speed of about 12 knots but not necessarily at 15 knots.

According to the IACS and BV Rules of 1982 the design load per attachement point for the
visor of Estonia would have been about 200 tons instead of the original 100 tons. This
means that the ultimate strength of the locking system would have been on the level of 360.
The lockings of the visor of Mariella and the lockings of the bow doors of Silja Europa
were probably on this or a little higher level. In spite of this, the bow doors of Silja Europa
suffered damage during the accident night. The bow doors of Silja Symphony and Serenade
were constructed according to even higher design loads and their strength was somewhere
above the level of 500 if the same scale as used for Estonia is applicable.





