

CONTENTS

PREFACE

THE JOINT ACCIDENT INVESTIGATION COMMISSION

Appointment
Status
Work schedule

SUMMARY

PART I FACTUAL INFORMATION

I THE ACCIDENT

2 OWNERSHIP AND OPERATING HISTORY

- 2.1 Operating history under Finnish flag
- 2.2 Under Estonian flag
- 2.3 Operating history with regard to wave conditions

3 THE VESSEL

- 3.1 Background
- 3.1.1 Contract, specification, building and delivery
- 3.1.2 Newbuilding inspection
- 3.2 General description and data

- 3.2.1 General arrangement
- 3.2.2 The hull and deck arrangement
- 3.2.3 Propulsion system and control
- 3.2.4 Electrical system
- 3.2.5 Ballast system
- 3.2.6 Car deck arrangement
- 3.2.7 Bridge layout
- 3.2.8 Navigation equipment and systems
- 3.2.9 Communication equipment
- 3.2.10 Maintenance, modifications and damage

3.3 Bow visor and ramp installation

- 3.3.1 General
- 3.3.2 Detailed technical description of the bow visor
- 3.3.3 Design documentation for the bow visor and its locking devices
- 3.3.4 Detailed technical description of the bow loading ramp
- 3.3.5 Actuating, monitoring and control systems for the bow visor and the ramp
- 3.3.6 Surveys, maintenance, damage and repairs

3.4 Emergency and life-saving arrangements and equipment

- 3.4.1 General
- 3.4.2 Lifeboats and rafts
- 3.4.3 Lifebuoys and lifejackets
- 3.4.4 Emergency beacons
- 3.4.5 Emergency alarm systems
- 3.4.6 Escape routes and instructions
- 3.4.7 Passenger information

3.5 Cargo handling system

- 3.5.1 Cargo lashing equipment
- 3.5.2 Operating practice and instructions

3.6 Certificates and inspections

- 3.6.1 Compliance with international conventions
- 3.6.2 Certificates valid at the time of the accident
- 3.6.3 Collision bulkhead compliance
- 3.6.4 Statutory inspections
- 3.6.5 Classification society inspections

3.7 Operational characteristics of the vessel

- 3.7.1 General observations
- 3.7.2 Speed resources
- 3.7.3 Stability documentation
- 3.7.4 Seakeeping characteristics

4 OPERATIONS ON BOARD

4.1 General

4.2 The crew

- 4.2.1 The manning of the ship
- 4.2.2 Qualifications of the deck officers and the deck crew
- 4.2.3 Qualifications of the engineers and the engine crew
- 4.2.4 The catering crew

4.3 Working routines and organisation

- 4.3.1 Deck department
- 4.3.2 Engine department
- 4.3.3 Catering department

4.4 Safety organisation

- 4.4.1 The development of the safety organisation
- 4.4.2 Alarm signals
- 4.4.3 Alarm groups
- 4.4.4 Training and drills

5 THE CIRCUMSTANCES OF THE VOYAGE

- 5.1 Timetable and route
- 5.2 Status of the vessel on departure
- **5.3** The departure condition

5.4 Meteorological conditions

- 5.4.1 Weather
- 5.4.2 Waves
- 5.4.3 Light conditions and visibility
- 5.4.4 Hydrological conditions
- 5.5 Speed

6 SUMMARY OF TESTIMONIES BY SURVIVORS

6.1 Introduction

6.2 Summary of testimonies by surviving crew members on duty

- 6.2.1 Summary of testimonies by the trainee second officer
- 6.2.2 Summary of testimonies by the able-bodied seaman (AB seaman) on watch
- 6.2.3 Summary of testimonies by the third engineer
- 6.2.4 Summary of testimonies by the system engineer
- 6.2.5 Summary of testimonies by the motorman

6.3 Summary of testimonies by surviving passengers and off- duty crew members

- 6.3.1 Testimonies concerning cargo lashings
- 6.3.2 Reports from deck 1
- 6.3.3 Reports from deck 4
- 6.3.4 Reports from deck 5
- 6.3.5 Reports from deck 6
- 6.3.6 Reports from deck 7
- 6.3.7 Reports from deck 8
- 6.3.8 Reports from uncertain locations
- 6.3.9 Reports from the staircases
- 6.3.10 Reports from the open deck, deck 7
- 6.3.11 Reports from witnesses in the water
- 6.3.12 Reports from witnesses in various floating devices
- 6.3.13 Summary of witness reports concerning lifejackets

7 THE RESCUE OPERATION

7.1 Summary of the operation

7. 2 The rescue organisation

- 7.2.1 General
- 7.2.2 Finland
- 7.2.3 Sweden
- 7.2.4 Estonia
- 7.2.5 Co-operation

7.3 The maritime radio distress and safety systems and the distress traffic

- 7.3.1 The maritime radio systems
- 7.3.2 Distress and safety watch
- 7.3.3 The recorded distress traffic
- 7.3.4 EPIRB beacons

7.4 Initiation of rescue actions

- 7.4.1 General
- 7.4.2 Action

7.5 The rescue operation

- 7.5.1 The sea traffic in the area
- 7.5.2 General considerations, vessels
- 7.5.3 Action taken by the vessels
- 7.5.4 General considerations, helicopters
- 7.5.5 Action by SAR helicopters
- 7.5.6 Action taken by fixed-wing aircraft
- 7.5.7 Transport of rescued persons to safety

7.6 The human outcome

- 7.6.1 Data about victims and survivors
- 7.6.2 Autopsy observations

8 OBSERVATIONS AFTER THE ACCIDENT

- **8.1 Locating the wreck**
- **8.2 ROV inspections**
- **8.3 Recovery of the visor**
- 8.4 Diving investigation

8.5 Damage to the wreck

- 8.5.1 General condition of the wreck
- 8.5.2 External hull damage
- 8.5.3 Visor damage
- 8.5.4 Ramp damage

8.6 Damage to the visor and ramp attachment devices

- 8.6.1 The visor bottom lock
- 8.6.2 The visor side locks
- 8.6.3 The visor hinge arrangement
- 8.6.4 The visor actuating arrangement
- 8.6.5 The ramp attachment and locking devices
- 8.6.6 The visor and ramp indicating devices
- 8.7 Condition of the interior
- 8.8 Observations on the navigation bridge
- 8.9 Victims
- 8.10 Life-saving equipment
- 8.11 The EPIRB beacons
- 8.12 Other observations

PART 2 ASSOCIATED FACTS

9 INTERNATIONAL CONVENTIONS, LEGISLATION, REGULATIONS AND CO-OPERATION

- 9.1 International co-operation and conventions
- 9.2 National maritime administration and legislation

9.3 Classification societies

- 9.4 The relationships between owner, shipyard, administration and class
- 9.5 The impact of the HERALD OF FREE ENTERPRISE accident on the development of safety regulations

10 HISTORY OF RO-RO FERRY TRAFFIC IN THE BALTIC SEA

- 10.1 Introduction
- **10.2 Development of the traffic**
- 10.3 Cargo deck arrangement
- 10.4 The Tallinn-Stockholm ro-ro ferry operations

II BOW DOOR FAILURES AND INCIDENTS

- 11.1 General
- 11.2 A brief history of incidents
- 11.3 The DIANA II incident

PART 3 ANALYSIS AND EVALUATION

12 OVERVIEW OF SEPARATE INVESTIGATIONS

- 12.1 Determination of sea loads on the visor by model tests
- 12.1.1 Test program
- 12.1.2 Summary of results
- 12.1.3 Long test series in oblique bow seas
- 12.1.4 Wave load components influence of wave height, heading and speed
- 12.2 Numerical simulation of vertical wave loads on the bow

visor

- 12.2.1 Introduction
- 12.2.2 Simulation method
- 12.2.3 Results
- 12.2.4 Comparison with experimental results
- 12.3 Estimate of maximum wave loads on the visor for the conditions at the accident

12.4 Predictions of wave-induced motion

- 12.4.1 Computation method
- 12.4.2 Results

12.5 Determination of hydrodynamic characteristics in heeled conditions using model tests

12.6 Simulation of flooding and sinking of the vessel

- 12.6.1 Floating conditions and stability during flooding
- 12.6.2 Water inflow simulations

12.7 Investigation of visor attachment

- 12.7.1 General
- 12.7.2 Material identifications and microscopical observations
- 12.7.3 Investigations of the attachments

13 DEVELOPMENT OF THE ACCIDENT

13.1 Meteorological conditions

13.2 Course of events

- 13.2.1 Introduction
- 13.2.2 Preparations for the voyage
- 13.2.3 Condition of visor and ramp closure
- 13.2.4 The voyage up to the accident
- 13.2.5 Separation of the visor
- 13.2.6 Development of the list and sinking of the vessel
- 13.2.7 The evacuation

13.3 Action on the bridge

- 13.4 Advance indications and alarms from the bow area
- 13.5 Failure sequence of bow visor and ramp
- 13.6 Flooding of the accommodation and sinking of the vessel

14 OWNERSHIP AND OPERATING ARRANGEMENTS

15 STRENGTH EVALUATION OF THE VISOR AND THE RAMP ATTACHMENTS

15.1 Design basis and requirements for the bow visor

- 15.1.1 Bureau Veritas' requirements for the visor attachments
- 15.1.2 Shipyard design procedures

- 15.2 Sea loads on the visor
- 15.3 Evaluation of the bottom locking device
- 15.4 Evaluation of the side locking devices
- 15.5 Evaluation of the hinges on deck
- 15.6 Manual locking devices
- 15.7 Evaluation of the visor actuators and their attachments
- 15.8 The ramp locking devices
- 15.9 Other damage to the visor
- 15.10 Failure modes and combined strength of the attachment devices
- 15.11 Design considerations
- 15.12 Comparison of design requirements and actual installation
- 15.13 Class and administration implementation requirements

16 ANALYSIS OF THE EVACUATION

- 16.1 The start of the evacuation
- 16.2 The mobilisation of the command group on the bridge
- 16.3 Alarms and activities by the bridge
- **16.4 Activities by crew members**
- 16.5 Obstructions to the evacuation
- 16.6 Passengers' and crew members' reactions
- 16.7 The limits for evacuation and the outcome
- 16.8 The rescue equipment

17 THE RESCUE OPERATION

17.1 Introduction

17.2 The distress traffic

17.3 Responses to the Mayday calls

17.3.1 Vessels

17.3.2 MRCCs and MRSCs

17.4 Readiness of the rescue units

17.5 Management

17.5.1 MRCC Turku

17.5.2 The On-Scene Commander (OSC)

17.6 Action at the accident site

17.6.1 Vessels

17.6.2 Helicopters

17.7 Other observations

17.7.1 Rescue equipment

17.7.2 The journalists in helicopters

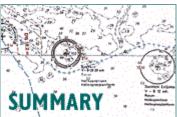
18 COMPLIANCE WITH COLLISION BULKHEAD REQUIREMENTS

18.1 History of compliance with requirements

18.2 Effects of non-compliance with requirements

18.3 The role of the administration

19 DEVELOPMENT OF REGULATIONS AFTER THE ACCIDENT


PART 4 CONCLUSIONS

20 FINDINGS

21 CONCLUSIONS

22 RECOMMENDATIONS

